
1. Introduction

Accurate knowledge of the thermophysical proper-
ties of helium is desirable for many applications in
metrology. Examples include microwave resonance
measurements for development of a pressure standard
[1], measuring the Boltzmann constant [2], and
acoustic gas thermometry [3].

In many cases, the nonideal behavior of the gas is a
major component of the overall uncertainty. That non-
ideality is expressed in the virial expansion

(1)

where p is the pressure, ρ the molar density, R the molar
gas constant, and T the absolute temperature. B(T ) is
the second virial coefficient, representing the lowest-

order deviation from ideal-gas behavior. As the density
increases, the contribution from the third virial coeffi-
cient C(T ) becomes significant. B(T ) is a function only
of the interactions between pairs of molecules, while
C(T ) is determined by interactions among three
molecules.

Because the helium atom has only two electrons, and
because of advances in methodology, algorithms, and
computing power for ab initio quantum calculations, it
is now possible to calculate properties of individual
helium atoms and pairs of atoms with very high accu-
racy. The use of such calculated values to develop stan-
dards for thermophysical properties was first proposed
by Aziz et al. [4], after which Hurly and Moldover [5]
calculated helium’s second virial coefficient B(T ),
dilute-gas viscosity, and dilute-gas thermal conductivi-
ty with uncertainties smaller than those of the best
experiments. Hurly and Mehl [6] recently improved on
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this work, primarily by using a more accurate pair
potential. Bich et al. [7] performed similar calculations
of pair quantities with another high-accuracy pair
potential [8]. They also calculated C(T ) with quantum
effects considered at a first-order perturbation level,
but (as explained in Sec. 2.2) the Axilrod-Teller term
they used for the three-body potential is not a good
representation of three-body effects for helium.

For the third virial coefficient C(T ), rigorous first-
principles calculations are more difficult. While classi-
cal calculation of C(T ) for spherically symmetric
species is straightforward [9], quantum effects must be
considered for a light gas such as helium. Semiclassical
perturbation approaches have been derived [10, 11], but
they will be insufficient at low temperatures and their
uncertainty is difficult to quantify. What is needed is a
fully quantum approach as is available for B(T ) [9],
but this problem has not been solved in closed form for
C(T ).

Early quantum calculations, aimed to elucidate how
C(T ) depends on the inter-molecular potentials, were
performed at the beginning of the 1960s, using the
general theoretical framework developed by Lee and
Yang [12]. Pais and Uhlenbeck [13] as well as Larsen
[14] discussed various approximations to the full quan-
tum problem, and these results were used to estimate
the binding energy. Other calculation attempts tried to
imitate the exact quantum calculations of B(T ) based
on scattering phase shifts. Larsen and Mascheroni [15]
were able to obtain a rigorous expression for the third
virial coefficient under the (unrealistic) assumption of
the absence of bound states. Reiner [16] developed a
calculation method based on the Faddeev equations for
the quantum-mechanical three-body problem, but the
difficulties in solving the coupled integral equations
could not be overcome, and approximations were
required.

The first rigorous quantum calculation of virial coef-
ficients was developed by Fosdick and Jordan [17-19]
who derived a path-integral expression for the third
virial coefficient in the presence of two-body pairwise
additive forces, and showed in detail how to evaluate it
numerically in the case of a simple Lennard-Jones
model for He.

Fosdick and Jordan’s approach was independently
rediscovered by Diep and Johnson [20] who devised,
by analogy to the classical expression, a path-integral
formula for the second virial coefficient of a quantum
gas. They used their expression to calculate the second
virial coefficient for a new H2-H2 potential that they had
computed using ab initio calculations, neglecting the
rotational degrees of freedom. Their expression was

generalized to the case of asymmetric rotors by
Schenter [21] who used it to calculate the second virial
coefficient of a model of water.

Recently, we developed a rigorous path-integral
Monte Carlo procedure to calculate the second virial
coefficient of molecular hydrogen, extending the
approach pioneered by Fosdick and Jordan [17] to take
into account the rotational degrees of freedom of linear
molecules. We used this method together with state-of-
the-art ab initio calculations of the pair potential to
obtain good agreement with experimental data in a
wide range of temperatures [22].

In the present work, we further extend the path-
integral approach employed by Jordan and Fosdick
for spherical particles [18] to calculate the third virial
coefficient of 4He in the presence of nonadditive three-
body interactions. We use this method to calculate
the third virial coefficient of 4He from 24.5561 K to
10 000 K, using a recent ab initio derived three-body
potential [23].

2. Intermolecular Potentials
2.1 Pair Potential

We write the pair potential as U2(r), where r is the
center-to-center distance between the atoms. We use
the pair potential known as φ07 , which was developed
by Hurly and Mehl [6] based on the best ab initio
calculations available in 2007. For uncertainty analysis,
we also use their potentials φ –

07 and φ +
07, which repre-

sent uncertainty limits (expanded uncertainty with
coverage factor k = 2) for the φ07 potential.

While this work was in progress, a pair potential of
higher accuracy (consistent within mutual uncertainties
with φ07 ) was published by Jeziorska et al. [24].
Because our uncertainties are dominated by the three-
body potential (see Sec. 4.2), our results would not
have been significantly different had we used that pair
potential.

2.2 Three-Body Potential

Calculation of C(T ) also requires knowledge of
the nonadditive three-body contribution to the
potential energy in a triplet of atoms. We write this as
U3 (r12 , r13 , r23 ), where ri j is the distance between
atoms i and j. The three-body potential of helium has
been studied by Cencek et al. [23], who developed
separate ab initio potentials based on symmetry-
adapted perturbation theory (SAPT) and coupled-
cluster (CC) calculations. The two potentials were
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estimated to have a maximum uncertainty of 10 %, but
very recent work [25] has shown that the SAPT poten-
tial is significantly less accurate, while the CC potential
is in good agreement (better than 10 %) with higher-
level calculations. We therefore employ the CC poten-
tial in this work. For purposes of uncertainty analysis,
we interpret the estimated 10 % uncertainty as an
expanded uncertainty at the k = 2 level. In analogy to
the procedure of Hurly and Mehl [6] for the pair
potential, we define for our uncertainty analysis three-
body potentials CC– (obtained by multiplying the
potential by 1.1 where it is negative and by 0.9 where it
is positive) and CC+ (multiplying by 0.9 where it is
negative and by 1.1 where it is positive).

It is worth noting that, at most temperatures of inter-
est, the main three-body effect for helium is the non-
additivity in repulsive forces. The commonly used
Axilrod-Teller three-body term [26] accounts only for
dispersion interactions. At all but the lowest tempera-
tures considered in this work, the reduced temperature
is quite high (compared to the characteristic tempera-
ture for the pair dispersion interaction of approxi-
mately 11 K), and three-body dispersion effects are
less important than three-body repulsion effects.
Therefore, an Axilrod-Teller term would seriously mis-
represent the three-body potential, even giving a contri-
bution to C(T ) of the wrong sign at moderate and high
temperatures.

3. Calculation Methods

Let us denote by QN (V,T ) the partition function of N
particles in a volume V at a temperature T. By defining
the quantities ZN as

(2)

then the expressions for the second and third virial
coefficients, B(T ) and C(T ), become [9]

(3)

(4)

3.1 Classical and Semiclassical Calculations

The explicit expression for the partition functions
and hence the coefficients Zk appearing in Eqs. (3) and

(4) depends on the framework in which the calculations
are performed. In classical statistical mechanics
(including the correct Boltzmann counting) one has

(5)

where β = 1/k BT , k B denotes the Boltzmann constant
and U (x1 , . . . , x N ) is the total potential energy of a con-
figuration with N particles at the positions x1 , . . . , x N .

In this case, the third virial coefficient C class (T ) is
given by the sum of a term depending on the two-body 

(6)

(7)

(8)

We have denoted by θ the angle between the vectors
r12 and r13. The distance between the particles labeled 2
and 3 is therefore given by

(9)

The classical formulae are accurate enough for heavy
particles at high temperature. If this limit is not
attained, quantum diffraction effects (Heisenberg
uncertainty) become appreciable, as is the case for
hydrogen and helium at and below room temperature.
As long as the quantum effects can be considered a
small correction to the classical behavior, the expres-
sions given above can be corrected by including the
first term in the expansion of the full quantum
expression in even powers of h– .

The expression for the first quantum correction to the
third virial coefficient has been evaluated by Yokota
[10]. Setting a2 = h– 2β /m, where m is the mass of the
particles under consideration, the semiclassical expres-
sion for the third virial coefficient turns out to be

(10)

(11)
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where

(12)

(13)

The classical and semiclassical values of C(T ) have
been obtained by direct numerical integration of
Eqs. (6) and (10). We have used the QAG adaptive
algorithm together with the Gauss-Kronrod 15-point
rule as implemented in the GNU Scientific Library
[27]. The interaction has been neglected beyond a
cutoff length of L = 4 nm. We have checked that using
a larger cutoff value does not appreciably affect the
results, and the same cutoff was also used in perform-
ing the path-integral Monte Carlo calculations
described below.

3.2 Path-Integral Monte Carlo

In the framework of non-relativistic quantum statis-
tical mechanics, the expression for the quantity ZN of
Eq. (2) becomes

(14)

where H^
N is the N-body Hamiltonian operator, |k 〉

denotes a complete set of N-particle states and P^ π is a
permutation operator, with the proper sign to take into
account the bosonic or fermionic nature of the particles.

denotes the thermal de Broglie

wavelength for a particle of mass m. In the following,
we will not be concerned with temperatures so low that
exchange effects play a relevant role [28] and hence we
will approximate the sum over P^ π with the identity
operator (Boltzmann statistics).

Equation (14) is the starting point to derive the path-
integral expressions for the second and third virial
coefficients, using Eqs. (3) and (4). In order to avoid
cumbersome notation, we will present the derivation in
detail in the case of the second virial coefficient. This
will allow us to establish some useful notation that
will be used to present in the most compact form
possible the path-integral formulae for the third virial
coefficient.

3.2.1 Second Virial Coefficient

The path-integral formula for the second virial coef-
ficient of Eq. (3), using the quantum-mechanical
expression of Eq. (14) in the case of Boltzmann statis-
tics, is readily obtained by first performing a canonical
transformation to the center of mass R ≡ (x1 + x2)/2 and
relative r ≡ r1 ≡ x2 – x1 coordinates. In the equation for
Z2, the kinetic energy relative to the center-of-mass
motion commutes with the kinetic and potential energy
of the relative motion and can be integrated out, obtain-
ing a factor V/Λ3

M , where M = 2m. As a consequence,
B(T ) is proportional to the trace of the Hamiltonian
describing the relative motion H^

r = p̂ 2
r /2μ + U^

2 (|r |) ≡
T^ + U^

2 , where μ = m/2 is the reduced mass of the pair
and p̂ r is the momentum conjugated to the relative
coordinate r.

The resulting expression

(15)

can then be evaluated by performing a Trotter expan-
sion of the kinetic and potential energies of the relative
motion,

(16)

keeping a finite value of the Trotter index P and
inserting P – 1 completeness relations 1 = ∫ dri |ri〉 〈ri |
(i = 2, . . . , P) between each of the P factors in Eq. (16).
The matrix elements of the kinetic energy operator can
be evaluated explicitly, obtaining

(17)

where K = 2πP/Λ 2
μ. The final outcome of this chain of

equivalences is to map the calculation of the quantum
partition function of Eq. (15) to the calculation of
the classical partition function of ring polymers with
P beads each [29]. The resulting expression can be
simplified by introducing the coordinates r = r1,
Δri = ri + 1 – ri (i = 1, . . . , P – 1) and letting

(18)

indicate the average of the two-body potential over the
positions occupied by the P beads of a given ring
polymer. Performing analogous manipulations

Volume 114, Number 5, September-October 2009
Journal of Research of the National Institute of Standards and Technology

252

2

22
3 2

1
d

( ) d e ,
24 d

U U
B T r

r
ββ − ⎛ ⎞= ⎜ ⎟⎝ ⎠∫

12 12 13 13

12 13 13 12
1 ( ) .
2

UU U U U U

U U U U

= ∇ ⋅∇ +∇ ⋅∇

+ ∇ ⋅∇ +∇ ⋅∇

K

( )3 ˆˆ| exp | ,N m N
k

Z k H kΝ
π

π
Λ β= −∑ ∑ P

B/ 2m h mk TΛ π=

( )
6

3
2 r3

ˆd | exp | ,
2

m

M

Z H
Λ

β
Λ

= −∫ r r r

( )2 2
ˆ ˆ ˆˆ( ) //e lim e e ,

P
T U U PT P

P

β ββ− + −−

→∞
=

2 3/ 2
2

3

ˆ
exp exp ( ) ,

2 2i j i j
p P K

P μ

β
μ Λ

⎛ ⎞ ⎛ ⎞− = − −⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠
r r r r

2 2
1

1( ) ( ) ,
P

i
i

U U
P =

= ∑r r



in the rather trivial case of Z 2
1 produces the following

expression for the second virial coefficient:

(19)

where Fring is the probability of finding a ring polymer
configuration in the ideal gas phase, as shown in
Ref. [30], and is given by

(20)

where ΔrP = rP – r1.
The second virial coefficient can also be written as

(21)

where the effective potential is defined as

(22)

that is, by averaging the factor exp (– βU–2) over ring
polymer configurations drawn from an ideal gas distri-
bution and having one bead at the point r. In the classi-
cal limit h– → 0, the ring polymers shrink to a point, and
hence Eq. (21) recovers the classical result.

3.2.2 Third Virial Coefficient

The same reasoning that was followed to derive the
path-integral expression for the second virial coeffi-
cient B(T ) in Eq. (19) can be applied to the case of the
third virial coefficient. In this case it is useful to evalu-
ate the expectation values over three-body operators
after having performed a canonical transformation to
the Jacobi coordinates R, r, ρρ and the corresponding
momenta P, p, ππ , defined as:

(23)

(24)

(25)

As in the case of B(T ) the center-of-mass motion
can be integrated out, but the Trotter factorization intro-
duces two different ring polymers, corresponding to the
coordinates r and ρρ ; we note in passing that the
masses associated with these degrees of freedom are
Mr = m /2 and Mρ = 2m /3, respectively, and that the
total potential energy of a three-body configuration,

(26)

is a function of the coordinates r and ρρ only. As a final
result, the expression for C(T ) can be written as

(27)
where we have defined, analogously to Eq. (18),

(28)

as the average of the potential energy of the three
bodies over the positions indicated by the beads of the
two given ring polymers corresponding to the Jacobi co-
ordinates r = r1 and ρρ = ρρ1. The three exponentials of U–2

appearing in Eq. (27) come from the three terms Z2Z 2
1 of

Eq. (4), when the two-body integral is written as a
function of the coordinates

(29)

(30)

(31)
respectively.

The integrals over the variables Δri and Δρρ i allow
one to define effective two- and three-body potentials
as averages over the two kinds of ring polymers,
analogously to Eq. (22)

(32)
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(33)

where x can be either r or ρρ + r /2 or ρρ – r /2. The
final expression for C(T ) is hence

(34)

Given the rotational symmetry of the system, the
volume of integration can be written as

(35)

where r and ρ are the moduli of the vectors r and ρρ ,
respectively, while Θ is the angle between them.

In the actual calculation, it is useful to write the
square of the second virial coefficient as

(36)
so that the difference of two integrals in Eq. (34) can be
evaluated as the integral of the difference. Note that in
Eq. (36) the coordinate ρρ is associated with a particle
having mass Mr and not Mρ as in Eqs. (32) and (33).

The calculation of the third virial coefficient in the
path-integral formalism follows directly from Eq. (34),
which shows that C(T ) is given as a three-dimensional
integral using effective two- and three-body potentials,
given by Eqs. (33) and (32), respectively. Since for each
of the atomic positions the effective potentials are ob-
tained as a costly average over configurations of ring
polymers, we chose to evaluate Eq. (34) using a Monte
Carlo integration procedure, namely the VEGAS
algorithm [27, 31, 32]. We used N = 5 × 105 integration
points for the production stage of the algorithm and
half as many for the equilibration stage.

For each of the atomic configurations considered in
the course of the Monte Carlo integration, we generate
n = 200 ring polymers for the r and ρρ coordinates,
distributed according to the probability Fring . This can
be done very efficiently using an interpolation formula
due to Levy [18, 33]. For each of the ring polymers, we
evaluate the corresponding average potentials U–2 and
U– and accumulate their Boltzmann factors to calculate

the effective potentials for the given configuration
according to Eqs. (32) and (33).

In order to estimate the statistical uncertainty of the
values of the third virial coefficient so obtained, we
perform 16 of these calculations for each value of T,
starting with different seeds for the random number
generator.

The final value for C(T ) is obtained as the average of
the values coming from the 16 independent calcula-
tions, and its Type A uncertainty is estimated as the
standard error of the mean from the same set of values.
Notice that this uncertainty takes into account the sta-
tistical error resulting from use of both a finite N and a
finite n in the calculations.

Finally, let us discuss the choice of the Trotter index
P. Since the path-integral method is exact in the limit of
large P, we fixed this number by calculating B(T ) with
our method for progressively increasing values of the
Trotter index P, until our results matched those per-
formed with the phase-shift method [6]. We found that
the choice P = 7 + 2400 K/T was enough to reach con-
vergence in a wide range of temperatures, and we sim-
ilarly checked that the same value of P was sufficient in
the case of C(T) at 273.16 K. The offset of 7 in the
expression for P is due to the approximation inherent in
Levy’s interpolation formula [18, 33].

4. Results
4.1 Third Virial Coefficients

We calculated C(T ) as described in Sec. 3.2 for the
potential-energy surface obtained by combining the φ07

pair potential referenced in Sec. 2.1 with the three-body
potential (CC) referenced in Sec. 2.2. Calculations
were performed over a wide range of temperatures, as
shown in Table 1. In addition to round values, some
temperatures were chosen due to their importance in
metrology. For example, our lowest temperature of
24.5561 K is the value assigned to the triple point of
neon in the International Temperature Scale of 1990
(ITS-90) [34]. It should be noted that T in our calcula-
tions is the thermodynamic temperature, which may
differ on the order of 0.005 % from the corresponding
ITS-90 temperature [3]. We included temperatures up
to 10 000 K, in order to match the range covered by
Hurly and Mehl [6] for B(T ). Temperatures below those
shown in Table 1 were not achievable with available
computing resources (the calculations for 24.5561 K
took approximately 700 hours of CPU time with
2.2 GHz processors for each combination of two- and
three-body potentials.)
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4.2 Uncertainty Analysis

The largest contribution to the uncertainty of C(T )
comes from imperfect knowledge of the three-body
part of the potential energy, but there are smaller
contributions that must also be considered. The follow-
ing three uncertainty contributions are identified:

• Uncertainty in the pair potential. The pair poten-
tial φ07 (see Sec. 2.1) used for our calculations
has an unknown systematic error (difference
from the true pair potential) that will produce

a corresponding uncertainty in C(T). In Ref. [6],
it is stated that the pair potentials φ –

07 and φ +
07

provide lower and upper bounds, respectively, to
the true potential at a level of confidence cor-
responding to an expanded uncertainty at the
k = 2 level. C(T ) calculated from these perturbed
potentials will represent an uncertainty at the
same k = 2 level. Therefore, we take as the
standard uncertainty (k = 1) from this source
one-fourth of the difference between C(T ) calcu-
lated with φ +

07 and with φ –
07 .

• Uncertainty in the three-body potential. As
explained in Sec. 2.2, we consider the CC+ and
CC– potentials to bound the true three-body
potential at a level of confidence corresponding
to an expanded uncertainty at the k = 2 level.
Therefore, we take as the standard uncertainty
(k = 1) from this source one-fourth of the differ-
ence between C(T ) calculated with CC+ and with
CC–. At all temperatures studied, this is the
largest of the three uncertainty contributions.

• Uncertainty in the convergence of the PIMC
calculation. This is estimated as the standard
deviation of the mean from 16 independent
Monte Carlo samples, as described near the end
of Sec. 3.2.2.

The first two of these contributions are systematic
(Type B) errors, while the third is strictly statistical
(Type A). The three contributions are combined in
quadrature, and the resulting standard uncertainty is
multiplied by a coverage factor k = 2 to produce the
expanded uncertainty U(C) in Table 1.

For purposes of illustration, we review the uncertain-
ty calculation (sometimes keeping insignificant digits
for clarity) for the point at 273.16 K. The difference
between C calculated with the φ +

07 and φ –
07 potentials is

0.062 cm6 ⋅ mol–2, so this component of the uncertainty
is 0.0155 cm6 ⋅ mol–2. The difference between cal-
culations with the CC+ and CC– three-body poten-
tials is 0.665 cm6 ⋅ mol–2, so this component of the
standard uncertainty is 0.166 cm6 ⋅ mol–2. The PIMC
integration with the CC three-body potential yields
C = 112.73 cm6 ⋅ mol–2 with integration uncertainty of
0.03 cm6 ⋅ mol–2. Combining the three contributions
in quadrature yields uc (C) = 0.1696 cm6 ⋅ mol–2,
which when multiplied by two yields an expanded
uncertainty with coverage factor k = 2 of U(C) =
0.339 cm6 ⋅ mol–2.
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Table 1. Third virial coefficients C(T ) calculated in this work and
our estimates (see Sec. 4.2) of their expanded (k = 2) uncertainties
U(C)

T C U(C)
(K) (cm6 ⋅ mol–2) (cm6 ⋅ mol–2)

24.5561 273.34 1.26
30.0 248.08 1.54
40.0 221.36 0.96
50.0 205.31 0.78
63.15 190.38 0.83
75.0 180.56 0.64
83.806 174.37 0.63

100.0 164.65 0.55
120.0 154.78 0.47
140.0 146.59 0.45
170.0 136.58 0.39
200.0 128.34 0.33
223.152 122.80 0.33
235.0 120.18 0.37
250.0 117.15 0.29
273.16 112.73 0.34
302.915 107.75 0.31
350.0 100.91 0.30
400.0 94.76 0.31
429.75 91.48 0.27
450.0 89.43 0.26
500.0 84.87 0.26
550.0 80.81 0.25
600.0 77.18 0.24
650.0 73.96 0.26
700.0 71.00 0.23
750.0 68.33 0.24
800.0 65.92 0.23
900.0 61.61 0.24

1000.0 57.87 0.24
1200.0 51.80 0.22
1400.0 46.98 0.23
1600.0 43.08 0.22
1800.0 39.81 0.22
2000.0 37.03 0.21
2500.0 31.59 0.21
5000.0 18.31 0.19

10000.0 9.67 0.16



4.3 Correlation for Results

For convenience in interpolation, we have correlated
the results for C(T ) in Table 1 as a function of absolute
temperature T with a simple empirical expression:

(37)

where T* = T/(100 K) and the parameters ai and bi are
given in Table 2. Equation (37) reproduces all the C(T )
values in Table 1 to within better than 0.11 %, which is
smaller than the standard uncertainty uc (C) and similar
to the portion of the uncertainty due to Type A sources
of error. For temperatures above 2000 K, where our
calculated values of C(T ) are sparse, a finer grid of
semiclassical calculations (which effectively coincide
with the PIMC calculations at these temperatures; see
Sec. 4.5) was used to guide the interpolation.

Equation (37) may be easily differentiated to obtain

tic measurements. We know of no rigorous way to
estimate the uncertainty of these derivatives, but some
idea of their quality may be obtained from the uncer-
tainty in C(T ) and the knowledge that the majority of
that uncertainty comes from Type B (systematic)
sources that would mostly cancel out in the computa-
tion of derivatives.

It is important to note that Eq. (37) is strictly for
interpolation. It is only valid for the range of tempera-
tures covered in Table 1 (24.5561 K to 10 000 K). The
behavior of Eq. (37) outside this range is physically
reasonable for short distances, but for example it does
not reproduce the maximum in C(T ) that is believed to
exist near 4 K [35].

4.4 Comparison With Experiment

In this section, we compare our results with selected
experimental data. This is not a comprehensive review
of experimental work; the purpose of the comparisons
is simply to show the scatter of the existing data and to
demonstrate the improvement in uncertainty of C(T )
obtained in our calculations. Therefore, we have select-
ed for comparison the most recent data sets and those
with well-documented uncertainties, adding other data
sets in a few cases in order to cover the entire tempera-
ture range of the experimental data.

We begin with the near-ambient temperature range,
which is of the most interest for metrology and
has been the subject of the most experimental study.
Figure 1 compares our results with four sources of
experimental data [36-39]. The error bars for the exper-
imental points in this and subsequent figures represent
an expanded uncertainty with coverage factor k = 2,
corresponding approximately to a 95 % confidence
interval. The appropriate comparable uncertainty cor-
responding to our calculated results is the last column
of Table 1; these uncertainties are not shown on Fig. 1
because they are approximately the size of the symbols
themselves.

These sources of experimental data are fairly consis-
tent; in particular the data of Blancett et al. [36] and of
McLinden and Lösch-Will [39] have found use in
metrology because their expanded uncertainties of
approximately 3 cm6 ⋅ mol–2 to 5 cm6 ⋅ mol–2 have been
the best available. Our results are fully consistent with
these measurements, but have an uncertainty smaller by
approximately one order of magnitude (for example,
our U(C) at 273.16 K is 0.34 cm6 ⋅ mol–2). Values of
C(T ) calculated classically are also shown in Fig. 1.
Semiclassical results are not shown; they lie slightly
above the full PIMC results but not enough to be clear-
ly visible on the scale of the figure. Figures 2-4 show
similar comparisons with selected data at low tempera-
tures [40-43], moderately low temperatures [36, 37, 39,
41, 42, 44], and high temperatures [38, 45-47], respec-
tively. In cases where experimental points are shown
without error bars, the original paper did not report
uncertainties. In all three figures, the uncertainty of the
present calculations (see Table 1) is smaller than the
size of the symbols. Classical results are shown on all
three figures; only on the low-temperature Fig. 2 are the
semiclassical results distinguishable from the PIMC
calculations on the scale of the figure. For all these
temperature ranges, our results are generally consistent 
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Table 2. Coefficients for Eq. (37) for the third virial coefficient of
helium

i ai bi

1 –13 337.07 –0.77
2 36 155.73 –0.85
3 –50 678.58 –1.00
4 50 673.92 –1.15
5 –23 876.30 –1.25
6 1 226.921 –1.50
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d dand , which are useful in the context of acous-
d d
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Fig. 1. Comparison of C(T ) calculated in this work with experimental values at near-ambient temperatures. Error
bars on experimental points represent expanded uncertainties with coverage factor k = 2; expanded uncertainties
for this work (given in Table 1) are not shown on the figure because the error bars would be similar in size to
the symbols.

Fig. 2. Comparison of C(T ) calculated in this work with experimental values at low temperatures. Error bars on
experimental points (drawn where reported) represent expanded uncertainties with coverage factor
k = 2; expanded uncertainties for this work (given in Table 1) are not shown on the figure because the error bars
would be smaller than the symbols.
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Fig. 3. Comparison of C(T ) calculated in this work with experimental values at moderately low temperatures.
Error bars on experimental points (drawn where reported) represent expanded uncertainties with coverage
factor k = 2; expanded uncertainties for this work (given in Table 1) are not shown on the figure because the error
bars would be smaller than the symbols.

Fig. 4. Comparison of C(T ) calculated in this work with experimental values at high temperatures. Error bars
on experimental points (drawn where reported) represent expanded uncertainties with coverage factor k = 2;
expanded uncertainties for this work (given in Table 1) are not shown on the figure because the error bars would
be smaller than the symbols.



with the available data. Given the scatter and uncertain-
ties of the experimental data, it is reasonable to say that
our calculations reduce the uncertainty in these temper-
ature ranges by more than an order of magnitude. There
appear to be no experimental data for C(T ) available
for helium at temperatures higher than those shown in
Fig. 4. While estimates for these higher temperatures
can be made based on extrapolation, Lennard-Jones
potentials, etc., undoubtedly the present results are
more reliable than any such estimates.

After this work was completed, Gaiser and
Fellmuth [48] published new experimental data for
C (T ) of helium from 3.7 K up to 26 K. Only our
lowest-temperature point (24.5561 K) overlaps with
their data.  Interpolating their results to this temperature
produces a value of approximately 281 cm6 ⋅ mol –2

with standard uncertainty u (C ) of approximately
11 cm6 ⋅ mol –2 . This agrees within its uncertainty with
our result given in Table 1.

4.5 Accuracy of Classical and Semiclassical C(T )

Because of the high computational demands of the
PIMC calculation, it is natural to consider whether, at
sufficiently high temperatures, adequate results may be 
obtained from the simpler semiclassical calculation or
even the much simpler classical calculation. One might 

consider such a calculation “adequate” if it differed
from the full PIMC calculation by less than the expand-
ed uncertainty U(C) in Table 1.

The classical calculation significantly underesti-
mates C(T ) even at quite high temperatures. For exam-
ple, at 1000 K it differs from the PIMC result by more
than 0.6 cm6 ⋅ mol–2, more than twice the expanded
uncertainty of the PIMC result. Only above approxi-
mately 2000 K is the classical calculation adequate in
the sense defined above. The degree to which the
classical calculation is in error at lower temperatures
can be seen in Figs. 1-4. While this error is comparable
to the scatter of the experimental data in many cases,
it is much larger than the uncertainty in our calcula-
tions.

The semiclassical calculation is significantly better,
closely reproducing the full PIMC calculations down to
about 200 K and producing adequate results at temper-
atures as low as 120 K. In Fig. 5, we plot the deviation 
of the semiclassical calculation from Eq. (37) as a func-
tion of temperature. Figure 5 also shows the classical
calculations and the individual PIMC calculations.
Because systematic errors from the potential contribute
similarly to both PIMC and semiclassical calculations,
the error bars in Fig. 5 represent (at a k = 2 level) only
the Type A uncertainty due to the convergence of the
PIMC calculations.
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Fig. 5. Comparison of classical and semiclassical values of C(T ) to PIMC values as represented by
Eq. (37). Error bars on PIMC points in this figure represent only the Type A uncertainty at a k = 2 level.



4.6 Contribution of Three-Body Potential to C(T )

We can examine the contribution of the three-body
potential to C(T ). While this is the most important
factor in the overall uncertainty (see Sec. 4.2). it actu-
ally contributes only a small fraction of the value of
C(T ) itself, on the order of 1 % or 2 %

Interestingly, the sign of the three-body contribution
changes; it contributes positively to C(T ) at low tem-
peratures and negatively at moderate and high temper-
atures. This reflects the fact that dispersion forces (for
which the net three-body contribution to the energy is
generally positive) are more important at low tempera-
tures, while exchange repulsion forces (for which the
net three-body effect is generally negative) are more
important at high temperatures. The “crossover” where
the net three-body contribution to C(T ) is zero occurs
at approximately 170 K.

5. Discussion

We have computed C(T ) for helium from state-of-
the-art pair and three-body potentials, producing values
with uncertainties smaller than those from experiment
by at least an order of magnitude. For temperatures at
and above the neon triple point, these values (as repre-
sented by Eq. (37)) provide a significant improvement
for this useful quantity in metrology.

The largest source of uncertainty in our calculations
of C(T ) is the uncertainty in the three-body potential;
therefore, this provides the greatest opportunity for
improvement. As mentioned in Sec. 2.2, some very
recent work [25], completed after our calculations were
finished, has analyzed the three-body potential at the full- 
configuration-interaction (FCI) level of theory. This
FCI potential is significantly more accurate than the CC
and SAPT potentials developed earlier in Ref. [23].

Given sufficient computing resources (and characteri-
zation of the uncertainty of the FCI three-body poten-
tial), our calculations here could be repeated with the
FCI potential and smaller uncertainties obtained. This
is planned for future work.

To give some indication of the improvement expect-
ed, in Table 3 we show a few values of CFCI calculated
with the new three-body potential of Ref. [25]. We are
not yet in a position to assign uncertainties to CFCI , but
our preliminary estimate is that the uncertainties will be
reduced by a factor of approximately three compared
to our current values. It is clear from Table 3 that the
values of CFCI are fully consistent with the values of C(T)
computed in this work (so the uncertainty assigned here
to the CC three-body potential of Ref. [23] was reason-
able), but that our values are systematically lower by a
small amount. Table 3 also shows values CSAPT calculat-
ed with the SAPT three-body potential of Ref. [23].
These values are much further away from the accurate
FCI results than those from the CC potential, demon-
strating at the level of C(T ) the superiority of the
CC three-body potential, which the authors of Ref. [25]
observed at the level of the potential itself. This pro-
vides further justification for our use of only the CC
potential from Ref. [23] in our calculation of C(T ).

Work is also underway to reduce the uncertainty in
the pair potential [49]. While improving the pair poten-
tial will significantly reduce the uncertainty in the
pair quantities such as B(T ) calculated by Hurly and
Mehl [6], it will not be as helpful for C(T ) where
the pair potential contributes a relatively small portion
of the overall uncertainty. When an improved
pair potential (including characterization of its un-
certainty) is completed, that would be an opportune
time to recalculate C(T ) with the FCI three-body poten-
tial of Ref. [25] in order to provide a complete and
consistent set of state-of-the-art ab initio property
values for helium.
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Table 3. Selected values of third virial coefficients C(T ) calculated in this work from the CC three-body potential [23] and their expanded
(k = 2) uncertainties U(C), along with values CSAPT calculated from the SAPT three-body potential [23] and CFCI calculated from the new three-
body potential of Cencek et al. [25]

100.0 164.65 0.55 163.98 164.98
200.0 128.34 0.33 127.89 128.60
273.16 112.73 0.34 112.34 112.92
400.0 94.76 0.31 94.41 94.88

1000.0 57.87 0.24 57.54 57.97

T C U(C) CSAPT CFCI

(K) (cm6 ⋅ mol–2) (cm6 ⋅ mol–2) (cm6 ⋅ mol–2) (cm6 ⋅ mol–2)



It would, of course, be desirable to extend this work
to lower temperatures. However, the required comput-
ing time per point scales approximately as 1/T, and
the computation at 24.5561 K already took over
4000 CPU-hours. Extending the range much below
20 K would require an improvement in the technique
or greatly increased computing power. At very low
temperatures, around 7 K and below, [28] the use of
Boltzmann statistics will begin to be in error. Extension
of the PIMC method to incorporate the correct statistics
for 4He (a boson) is feasible but would introduce
additional complexity and computing time.

There would also be some interest in C(T ) for the
isotope 3He. Calculating C(T ) for 3He would be a
straightforward extension of the current work, although
the smaller mass (and therefore larger quantum effects)
would somewhat increase the computational require-
ments. Unfortunately, the greatest interest in 3He in
metrology is for thermometry at very low temperatures
that are currently beyond our reach with this method.

For metrology at moderately high pressures, the
fourth virial coefficient D(T ) might also be of interest.
The potential energy should be adequately described by
the sum of pair and three-body potentials; the relative-
ly small size of the three-body contribution compared
to the pair contribution suggests that nonadditivity of
the potential at the four-body level should be tiny (this
could be checked by ab initio calculations at selected
configurations). PIMC calculation of D(T ) would be
computationally prohibitive, except perhaps at quite
high temperatures where quantum effects are small.
However, as discussed in Sec. 4.5, semiclassical calcu-
lations are accurate for C(T ) above approximately
200 K; it is reasonable to assume that this would also be
true for D(T ). In the paper deriving the semiclassical
perturbation approach to C(T ), Yokota [10] indicates
that extension of the approach to D(T ) is feasible, but
to our knowledge it has not been done. Such an exten-
sion of the semiclassical approach could provide high-
ly accurate values of D(T ) for helium in the important
metrological range near room temperature.

measurements, where they are related to the acoustic
virial coefficients. These may be obtained by differen-
tiating the interpolating Eq. (37), but the uncertainty
in such derived values is difficult to quantify. Direct

sible through the use of histogram reweighting to-

gether with the technique of thermodynamic inte-
gration to obtain N-particle functions and, as a conse-
quence, the virial coefficients from Eqs. (3) and (4).
Evaluation of the partition functions might also provide
an alternative route for the calculation of D(T) and/or
the incorporation of quantum statistics (bosonic or
fermionic) at low temperatures.
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